「SDOI 2017」数字表格
题目链接:LOJ 2000
Doris 刚刚学习了 $\text{Fibnacci}$ 数列,用 $f[i]$ 表示数列的第 $i$ 项,那么:
$$ \begin{align*} f[0] &= 0 \\ f[1] &= 1 \\ f[n] &= f[n - 1] + f[n - 2], n \ge 2 \end{align*} $$
Doris 用老师的超级计算机生成了一个 $n \times m$ 的表格,第 $ i $ 行第 $ j $ 列的格子中的数是 $f[\gcd(i, j)]$,其中 $\gcd(i, j)$ 表示 $i$ 与 $j$ 的最大公约数。
Doris 的表格中共有 $ n \times m $ 个数,她想知道这些数的乘积是多少。
这些数的乘积实在是太大了,所以 Doris 只想知道乘积对 $10 ^ 9 + 7$ 取模后的结果。
本题有 $T$ 组数组。
数据范围:$1 \le T \le 1000$,$1 \le n, m \le 10 ^ 6$。